论文标题
具有所有电力型操作员几乎是周期性的反身巴拉克空间
Reflexive Banach spaces with all power-bounded operators almost periodic
论文作者
论文摘要
我们分析了由功率结合的操作员在形式的“标量和紧凑型功率”形式的反射式Banach空间上的恒星特性,并表明它们几乎是周期性的(所有轨道都是有条件的紧凑)。如果这样的操作员弱混合,那么它是稳定的(其功率在强操作员拓扑中收敛)。LETX-ISP是Argyros和Motakis构建的可分离反射性不可分解的Banach空间,其中每个操作员都有一个不变的子空间。我们得出的结论是,X-ISP的封闭子空间上的每个电源绑定的操作员几乎是周期性的。
We analyze the ergodic properties of power-bounded operators on a reflexive Banach space of the form "scalar plus compact-power", and show that they are almost periodic (all the orbits are conditionally compact). If such an operator is weakly mixing, then it is stable (its powers converge in the strong operator topology).Let X-ISP be the separable reflexive indecomposable Banach space constructed by Argyros and Motakis, in which every operator has an invariant subspace. We conclude that every power-bounded operator on a closed subspace of X-ISP is almost periodic.