论文标题

特征豁免的公平性:反事实和观察措施

Fairness Under Feature Exemptions: Counterfactual and Observational Measures

论文作者

Dutta, Sanghamitra, Venkatesh, Praveen, Mardziel, Piotr, Datta, Anupam, Grover, Pulkit

论文摘要

随着在高度结果域中使用ML的使用日益增加,量化了有关受保护属性的差异,例如性别,种族等很重要。虽然量化差异是必不可少的,但有时候,职业的需求可能需要使用某些特征,而这些特征以某种方式可以解释的任何差异可能需要豁免。例如,在雇用针对安全至关重要应用的软件工程师时,可以强烈称重编码技能,而名称,邮政编码或参考信件只能在不增加差异的范围内使用。在这项工作中,我们提出了将总差异(从反事实公平启发的量化)中的信息理论分解为两个组成部分:一种非避风式组件,该组件量化了无法由关键特征无法解释的部分,以及量化其余差异的豁免组件。这种分解使人们可以检查差异是否纯粹是由于关键特征(启发了从业务必要性辩护不同的影响法律),并且还可以在需要时选择性删除非豁免组件。我们通过规范的示例来达到这种分解,这些示例导致一组理想的特性(公理),即对非豁免差异的度量应满足。我们提出的措施满足了所有措施。我们的量化使因果关系,辛普森的悖论以及信息理论的作品被称为部分信息分解。我们还获得了不可能的结果,表明没有观察措施能够满足所有理想的特性,这使我们放松了目标并检查只能满足其中一些的观察措施。我们进行案例研究,以说明如何在减少非豁免差异的同时审核/火车模型。

With the growing use of ML in highly consequential domains, quantifying disparity with respect to protected attributes, e.g., gender, race, etc., is important. While quantifying disparity is essential, sometimes the needs of an occupation may require the use of certain features that are critical in a way that any disparity that can be explained by them might need to be exempted. E.g., in hiring a software engineer for a safety-critical application, coding-skills may be weighed strongly, whereas name, zip code, or reference letters may be used only to the extent that they do not add disparity. In this work, we propose an information-theoretic decomposition of the total disparity (a quantification inspired from counterfactual fairness) into two components: a non-exempt component which quantifies the part that cannot be accounted for by the critical features, and an exempt component that quantifies the remaining disparity. This decomposition allows one to check if the disparity arose purely due to the critical features (inspired from the business necessity defense of disparate impact law) and also enables selective removal of the non-exempt component if desired. We arrive at this decomposition through canonical examples that lead to a set of desirable properties (axioms) that a measure of non-exempt disparity should satisfy. Our proposed measure satisfies all of them. Our quantification bridges ideas of causality, Simpson's paradox, and a body of work from information theory called Partial Information Decomposition. We also obtain an impossibility result showing that no observational measure can satisfy all the desirable properties, leading us to relax our goals and examine observational measures that satisfy only some of them. We perform case studies to show how one can audit/train models while reducing non-exempt disparity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源