论文标题
使用深度学习在高速公路上的异常运动检测
Anomalous Motion Detection on Highway Using Deep Learning
论文作者
论文摘要
视觉异常检测的研究由于其在监视中的应用而引起了很大的兴趣。使用固定摄像机构建了用于评估的通用数据集,该固定摄像头俯瞰着感兴趣的区域。先前的研究表明,在这些环境中检测空间异常和时间异常方面有希望的结果。自动驾驶汽车的出现为在更具动态的应用程序中应用视觉异常检测提供了机会,但在这种类型的环境中不存在数据集。本文介绍了一个新的异常检测数据集 - 高速公路交通异常(HTA)数据集 - 用于从高速公路上检测到车辆仪表板视频的异常交通模式的问题。我们评估了最先进的深度学习异常检测模型,并提出了这些方法的新变化。我们的结果表明,使用固定相机为设置而构建的最新模型不能很好地转化为更具动态的环境。这些SOTA方法的拟议变体在新的HTA数据集上显示出令人鼓舞的结果。
Research in visual anomaly detection draws much interest due to its applications in surveillance. Common datasets for evaluation are constructed using a stationary camera overlooking a region of interest. Previous research has shown promising results in detecting spatial as well as temporal anomalies in these settings. The advent of self-driving cars provides an opportunity to apply visual anomaly detection in a more dynamic application yet no dataset exists in this type of environment. This paper presents a new anomaly detection dataset - the Highway Traffic Anomaly (HTA) dataset - for the problem of detecting anomalous traffic patterns from dash cam videos of vehicles on highways. We evaluate state-of-the-art deep learning anomaly detection models and propose novel variations to these methods. Our results show that state-of-the-art models built for settings with a stationary camera do not translate well to a more dynamic environment. The proposed variations to these SoTA methods show promising results on the new HTA dataset.