论文标题
Amenet:轨迹预测的细心地图编码器网络
AMENet: Attentive Maps Encoder Network for Trajectory Prediction
论文作者
论文摘要
轨迹预测对于规划安全未来运动的应用至关重要,即使在未来几秒钟的城市混合交通中,仍然具有挑战性。代理的移动如何受到不同环境中相邻代理的各种行为的影响。为了预测运动,我们提出了一个名为Actentive Maps编码网络(AMENET)的端到端生成模型,该模型编码了代理的运动和交互信息,以进行准确且现实的多路轨迹预测。对条件变分的自动编码模块进行了训练,以基于对交互作用建模的细心动态图来学习可能未来路径的潜在空间,然后用于预测以观察到的过去轨迹为条件的多个合理的未来轨迹。使用两个公共轨迹预测基准Trajnet和Ind验证了Amenet的功效。
Trajectory prediction is critical for applications of planning safe future movements and remains challenging even for the next few seconds in urban mixed traffic. How an agent moves is affected by the various behaviors of its neighboring agents in different environments. To predict movements, we propose an end-to-end generative model named Attentive Maps Encoder Network (AMENet) that encodes the agent's motion and interaction information for accurate and realistic multi-path trajectory prediction. A conditional variational auto-encoder module is trained to learn the latent space of possible future paths based on attentive dynamic maps for interaction modeling and then is used to predict multiple plausible future trajectories conditioned on the observed past trajectories. The efficacy of AMENet is validated using two public trajectory prediction benchmarks Trajnet and InD.