论文标题
模棱两可的系统理论和观察者设计
Equivariant Systems Theory and Observer Design
论文作者
论文摘要
现代机器人技术和航空电子应用中的各种系统模型都可以自然对称。此类系统被称为e象,对称性提供的结构是观察者设计中的强大工具。在过去的十年中,通过利用其固有的Lie-Group状态空间结构来实现态度和姿势估计,同谱和速度有助于态度估计的态度和姿势估计,跟踪态度和速度有助于态度估计的观察者的显着进展。但是,对于同质空间上的系统,几乎没有做过的工作,即在多种多样的系统上,lie群在lie组本身上起作用而不是系统。机器人视觉的最新研究发现了许多问题的均质空间上的对称性和模棱两可的结构,包括视觉刺耳的关键问题和视觉同时定位和映射。这些发现激发了对同质空间上的模棱两可系统的结构的更深入的观察。本文提供了对此类系统进行观察者和过滤器设计所需的基础理论的全面发展。
A wide range of system models in modern robotics and avionics applications admit natural symmetries. Such systems are termed equivariant and the structure provided by the symmetry is a powerful tool in the design of observers. Significant progress has been made in the last ten years in the design of filters and observers for attitude and pose estimation, tracking of homographies, and velocity aided attitude estimation, by exploiting their inherent Lie-group state-space structure. However, little work has been done for systems on homogeneous spaces, that is systems on manifolds on which a Lie-group acts rather than systems on the Lie-group itself. Recent research in robotic vision has discovered symmetries and equivariant structure on homogeneous spaces for a host of problems including the key problems of visual odometry and visual simultaneous localisation and mapping. These discoveries motivate a deeper look at the structure of equivariant systems on homogeneous spaces. This paper provides a comprehensive development of the foundation theory required to undertake observer and filter design for such systems.