论文标题

图形 - 斯泰格:语义可控的隐志文本生成以知识图指导

Graph-Stega: Semantic Controllable Steganographic Text Generation Guided by Knowledge Graph

论文作者

Yang, Zhongliang, Gong, Baitao, Li, Yamin, Yang, Jinshuai, Hu, Zhiwen, Huang, Yongfeng

论文摘要

大多数现有的文本生成性地理方法基于编码在生成过程中每个单词的条件概率分布,然后根据秘密信息选择特定单词,以实现信息隐藏。这样的方法具有可能带来潜在安全风险的局限性。首先,随着嵌入速率的提高,这些模型将选择具有较低条件概率的单词,这将降低产生的地理文本的质量;其次,他们无法控制最终生成的隐志文本的语义表达。本文提出了一种新的文本生成隐志方法,该方法与现有模型静静不同。我们使用知识图(kg)来指导世代术的产生。一方面,我们通过在知识图中编码路径来隐藏秘密信息,而不是每个生成的单词的条件概率;另一方面,我们可以在一定程度上控制生成的地理文本的语义表达。实验结果表明,所提出的模型可以保证生成的文本质量及其语义表达的质量,这是当前文本生成隐志的补充和改进。

Most of the existing text generative steganographic methods are based on coding the conditional probability distribution of each word during the generation process, and then selecting specific words according to the secret information, so as to achieve information hiding. Such methods have their limitations which may bring potential security risks. Firstly, with the increase of embedding rate, these models will choose words with lower conditional probability, which will reduce the quality of the generated steganographic texts; secondly, they can not control the semantic expression of the final generated steganographic text. This paper proposes a new text generative steganography method which is quietly different from the existing models. We use a Knowledge Graph (KG) to guide the generation of steganographic sentences. On the one hand, we hide the secret information by coding the path in the knowledge graph, but not the conditional probability of each generated word; on the other hand, we can control the semantic expression of the generated steganographic text to a certain extent. The experimental results show that the proposed model can guarantee both the quality of the generated text and its semantic expression, which is a supplement and improvement to the current text generation steganography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源