论文标题

具有光学随机特征的分子动力学中的在线变更点检测

Online Change Point Detection in Molecular Dynamics With Optical Random Features

论文作者

Chatelain, Amélie, Tommasone, Elena, Daudet, Laurent, Poli, Iacopo

论文摘要

蛋白质是由原子不断波动的,但有时会发生大规模变化。这种过渡具有生物学意义,将蛋白质的结构与其功能与细胞联系起来。原子级模拟(例如分子动力学(MD))用于研究这些事件。但是,分子动力学模拟会产生具有多个可观察力的时间序列,而变化通常只会影响其中的一些。因此,事实证明,检测构象变化对于大多数变更点检测算法都是具有挑战性的。在这项工作中,我们专注于在许多嘈杂的可观察情况下对此类事件的识别。特别是,我们表明,可以沿着光学硬件使用NO-PRIOR-知识指数加权平均值(NEWMA)算法,以实时成功识别这些变化。我们的方法不需要区分蛋白质的背景和蛋白质本身。对于更大的模拟,它比使用传统硅硬件要快,并且具有较低的内存足迹。该技术可以增强分子构象空间的采样。它也可用于检测具有大量功能的其他顺序数据中的变更点。

Proteins are made of atoms constantly fluctuating, but can occasionally undergo large-scale changes. Such transitions are of biological interest, linking the structure of a protein to its function with a cell. Atomic-level simulations, such as Molecular Dynamics (MD), are used to study these events. However, molecular dynamics simulations produce time series with multiple observables, while changes often only affect a few of them. Therefore, detecting conformational changes has proven to be challenging for most change-point detection algorithms. In this work, we focus on the identification of such events given many noisy observables. In particular, we show that the No-prior-Knowledge Exponential Weighted Moving Average (NEWMA) algorithm can be used along optical hardware to successfully identify these changes in real-time. Our method does not need to distinguish between the background of a protein and the protein itself. For larger simulations, it is faster than using traditional silicon hardware and has a lower memory footprint. This technique may enhance the sampling of the conformational space of molecules. It may also be used to detect change-points in other sequential data with a large number of features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源