论文标题
本地炒量子动力学中的多区域纠缠
Multi-Region Entanglement in Locally Scrambled Quantum Dynamics
论文作者
论文摘要
我们研究了在局部争夺的量子动力学下的多区域两分纠缠熵的演变。我们表明,多区域纠缠可以显着改变单区纠缠的增长,在现有文献中,其影响很大程度上被忽略了。我们开发了一个新颖的理论框架,称为“纠缠特征形式主义”,以系统地组织所有多区域纠缠作为无标志的多体状态。我们进一步提出了一个两参数矩阵乘积状态(MPS)ANSATZ,以有效地捕获指数的许多多区域纠缠特征。使用这些工具,我们能够共同研究多区域纠缠动力学并代表MPS参数空间中的演变。通过比较纠缠切割运动的动力约束,我们能够在统一的纠缠特征哈密顿量中识别不同的量子动力学模型。根据量子动力学模型,我们发现多区域效应可以主导单个区域的纠缠生长,而仅在HAAR随机电路中消失。我们根据纠缠功能汉密尔顿(Hamiltonian)计算运算符平均的超级阶外相关器,并从结果中提取蝴蝶速度。我们表明,即使在多区域纠缠的影响下,纠缠速度和蝴蝶速度之间的先前猜想也是如此。这些发展可以实现对量子多体系统中多区域纠缠动态的更有效的数值模拟和更系统的理论理解。
We study the evolution of multi-region bipartite entanglement entropy under locally scrambled quantum dynamics. We show that the multi-region entanglement can significantly modify the growth of single-region entanglement, whose effect has been largely overlooked in the existing literature. We developed a novel theoretical framework, called the entanglement feature formalism, to organize all the multi-region entanglement systematically as a sign-free many-body state. We further propose a two-parameter matrix product state (MPS) ansatz to efficiently capture the exponentially many multi-region entanglement features. Using these tools, we are able to study the multi-region entanglement dynamics jointly and represent the evolution in the MPS parameter space. By comparing the dynamical constraints on the motion of entanglement cuts, we are able to identify different quantum dynamics models in a unifying entanglement feature Hamiltonian. Depending on the quantum dynamics model, we find that multi-region effects can dominate the single region entanglement growth and only vanish for Haar random circuits. We calculate the operator-averaged out-of-time-order correlator based on the entanglement feature Hamiltonian and extract the butterfly velocity from the result. We show that the previously conjectured bound between the entanglement velocity and the butterfly velocity holds true even under the influence of multi-region entanglement. These developments could enable more efficient numerical simulations and more systematic theoretical understandings of the multi-region entanglement dynamics in quantum many-body systems.