论文标题

基于有限温度相对论准粒子随机相近似的恒星电子捕获率

Stellar electron capture rates based on finite temperature relativistic quasiparticle random-phase approximation

论文作者

Ravlic, A., Yuksel, E., Niu, Y. F., Colo, G., Khan, E., Paar, N.

论文摘要

电子捕获过程在超新星爆炸之前的巨大恒星的核心崩溃的演变中起着重要作用。在这项研究中,相对论能量密度的功能框架,包括有限温度和核配对效应,描述了恒星环境中核的电子捕获。相关的核转变$ j^π= 0^\ pm,1^\ pm,2^\ pm $是使用有限温度质子质子 - 内核准粒子随机相位近似,其密度依赖性的介子 - 偏移有效相互作用DD-ME2。在Gamow-Teller过渡强度以及$ {}^{44} $ ti和$ {}^{56} $ Fe中的电子捕获横截面和速率中研究了配对和温度效应。发现配对相关性建立了类似于有限温度效应的额外的未阻止机制,该机制可以允许其他被阻断的单粒子过渡。在有限温度下包含配对相关性可以显着改变电子捕获的横截面,即使以$ {}^{44} $ ti的限制,甚至最多可改变两倍,而对于相同的核电子捕获速率也可以增加一个数量级以上。我们得出的结论是,为了完整描述电子对核上的捕获,必须考虑配对和温度效应。

The electron capture process plays an important role in the evolution of the core collapse of a massive star that precedes the supernova explosion. In this study, the electron capture on nuclei in stellar environment is described in the relativistic energy density functional framework, including both the finite temperature and nuclear pairing effects. Relevant nuclear transitions $J^π= 0^\pm, 1^\pm, 2^\pm$ are calculated using the finite temperature proton-neutron quasiparticle random phase approximation with the density-dependent meson-exchange effective interaction DD-ME2. The pairing and temperature effects are investigated in the Gamow-Teller transition strength as well as the electron capture cross sections and rates for ${}^{44}$Ti and ${}^{56}$Fe in stellar environment. It is found that the pairing correlations establish an additional unblocking mechanism similar to the finite temperature effects, that can allow otherwise blocked single-particle transitions. Inclusion of pairing correlations at finite temperature can significantly alter the electron capture cross sections, even up to a factor of two for ${}^{44}$Ti, while for the same nucleus electron capture rates can increase by more than one order of magnitude. We conclude that for the complete description of electron capture on nuclei both pairing and temperature effects must be taken into account.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源