论文标题

在低温下解决液态氦气中声音传播的难题

Resolving the puzzle of sound propagation in liquid helium at low temperatures

论文作者

Scott, Tony C., Zloshchastiev, Konstantin G.

论文摘要

实验数据表明,在低于1 K的温度下,液态氦气中的压力对密度有立方体依赖性。因此,声音尺度是压力的立方根。在临界压力点附近,此速度接近零,从而使临界压力为负,因此表明空化不稳定性状态。我们证明,要解释这一依赖性,必须将液氦视为三种量子bose液体的混合物:稀释(Gross-pitaevskii-type)Bose-Einstein冷凝物,Ginzburg-sobyanin-type type fluid和Aboogarithmic superpluid。因此,这种混合物的动力学是通过量子波方程来描述的,量子波方程不仅包含有关凝聚力波函数的多项式(Gross-Pitaevskii和Ginzburg-sobyanin)非线性的,而且还包含非多物质对数非固定性。我们在模型中得出了状态和声音速度的方程,并显示了他们与实验的一致性。

Experimental data suggests that, at temperatures below 1 K, the pressure in liquid helium has a cubic dependence on density. Thus the speed of sound scales as a cubic root of pressure. Near a critical pressure point, this speed approaches zero whereby the critical pressure is negative, thus indicating a cavitation instability regime. We demonstrate that to explain this dependence, one has to view liquid helium as a mixture of three quantum Bose liquids: dilute (Gross-Pitaevskii-type) Bose-Einstein condensate, Ginzburg-Sobyanin-type fluid, and logarithmic superfluid. Therefore, the dynamics of such a mixture is described by a quantum wave equation, which contains not only the polynomial (Gross-Pitaevskii and Ginzburg-Sobyanin) nonlinearities with respect to a condensate wavefunction, but also a non-polynomial logarithmic nonlinearity. We derive an equation of state and speed of sound in our model, and show their agreement with experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源