论文标题
微流体网络中的自发振荡和负导过渡
Spontaneous oscillations and negative-conductance transitions in microfluidic networks
论文作者
论文摘要
微流体系统中流动的趋势线性行为对设计集成的流量控制方案构成了挑战,以执行复杂的流体处理任务。这种障碍导致使用了许多外部控制设备来操纵流,从而挫败了实验室芯片技术的潜在可扩展性和可移植性。在这里,我们设计了一个具有非线性流动动力学的微流体网络,该网络可以实现用于片上流量控制的新机制。该网络显示出振荡性输出模式,可动的流量状态,磁滞,信号放大和负导率转变,所有这些都不依赖于专用的外部控制硬件,可移动零件,灵活的组件或振荡输入。这些动力学是由层流中的非线性流体惯性效应引起的,我们通过网络几何形状的设计扩增和利用了线束。我们建议这些结果得到流体动力学模拟和理论建模的支持,具有激发新内置控制能力的发展,例如芯片计时和同步流动模式。
The tendency for flows in microfluidic systems to behave linearly poses a challenge for designing integrated flow control schemes to carry out complex fluid processing tasks. This hindrance has led to the use of numerous external control devices to manipulate flows, thereby thwarting the potential scalability and portability of lab-on-a-chip technology. Here, we devise a microfluidic network exhibiting nonlinear flow dynamics that enable new mechanisms for on-chip flow control. This network is shown to exhibit oscillatory output patterns, bistable flow states, hysteresis, signal amplification, and negative-conductance transitions, all without reliance on dedicated external control hardware, movable parts, flexible components, or oscillatory inputs. These dynamics arise from nonlinear fluid inertia effects in laminar flows that we amplify and harness through the design of the network geometry. We suggest that these results, which are supported by fluid dynamical simulations and theoretical modeling, have the potential to inspire development of new built-in control capabilities, such as on-chip timing and synchronized flow patterns.