论文标题
QED驱动的QAOA用于网络流优化
QED driven QAOA for network-flow optimization
论文作者
论文摘要
我们提出了一个通用框架,用于修改量子近似优化算法(QAOA)以求解受约束的网络流问题。通过利用流量约束与高斯定律之间的类比,我们设计了晶格量子电动力学(QED)启发的混合汉密尔顿人,这些混合汉密尔顿人在整个QAOA过程中都保留了流量约束。这导致需要探索的配置空间的大小呈指数减小,与原始的QAOA例程相比,我们通过数值模拟显示的质量更高的近似解决方案。我们概述了与交通拥堵最小化有关的边缘 - 局关系路径(EDP)问题的特定实现,数值分析了初始状态选择的效果,并通过粒子涡流二元映射探索电路复杂性和Qubit资源之间的权衡。比较初始状态的效果表明,从千古(无偏)叠加开始的溶液的叠加比从混音器地面开始的情况下产生的性能更好,这表明从“近距离脱落到绝热性”机制通常用于激励QAOA。
We present a general framework for modifying quantum approximate optimization algorithms (QAOA) to solve constrained network flow problems. By exploiting an analogy between flow constraints and Gauss's law for electromagnetism, we design lattice quantum electrodynamics (QED) inspired mixing Hamiltonians that preserve flow constraints throughout the QAOA process. This results in an exponential reduction in the size of the configuration space that needs to be explored, which we show through numerical simulations, yields higher quality approximate solutions compared to the original QAOA routine. We outline a specific implementation for edge-disjoint path (EDP) problems related to traffic congestion minimization, numerically analyze the effect of initial state choice, and explore trade-offs between circuit complexity and qubit resources via a particle-vortex duality mapping. Comparing the effect of initial states reveals that starting with an ergodic (unbiased) superposition of solutions yields better performance than beginning with the mixer ground-state, suggesting a departure from the "short-cut to adiabaticity" mechanism often used to motivate QAOA.