论文标题
伯特 - 盐分方程形式主义:从物理学到化学
The Bethe-Salpeter Equation Formalism: From Physics to Chemistry
论文作者
论文摘要
Bethe-Salpeter方程(BSE)形式主义正在稳步宣称自己是化学家可用的计算方法集合中的一种新的有效和准确的工具,以预测分子系统中的光激发。特别是,所谓的$ GW $近似值的组合,可访问可靠的电离能量和电子亲和力,以及能够对UV/vis Spectra进行建模的BSE形式主义,已证明可以提供准确的单线激发能量,其典型误差为$ 0.1 $ 0.3 $ 0.3 $ 0.3 $ ev。 BSE具有类似的计算成本与时间相关的密度功能理论(TD-DFT),可以提供与最准确的全球和范围分离的混合功能相当的准确性,而无需选择交换 - 相关功能的不安定选择,可以解决其他已知的问题(\ textit {eftextit {e.g},Charge-ChardiT {e.g。},Charge-Charge-transtransions)。在这篇\ textit {Perspective}文章中,我们提供了BSE的历史概述,特别关注其凝结的根源。我们还提出了对不同化学情况下的优势和缺点的批判性审查。
The Bethe-Salpeter equation (BSE) formalism is steadily asserting itself as a new efficient and accurate tool in the ensemble of computational methods available to chemists in order to predict optical excitations in molecular systems. In particular, the combination of the so-called $GW$ approximation, giving access to reliable ionization energies and electron affinities, and the BSE formalism, able to model UV/Vis spectra, has shown to provide accurate singlet excitation energies with a typical error of $0.1$--$0.3$ eV. With a similar computational cost as time-dependent density-functional theory (TD-DFT), BSE is able to provide an accuracy on par with the most accurate global and range-separated hybrid functionals without the unsettling choice of the exchange-correlation functional, resolving further known issues (\textit{e.g.}, charge-transfer excitations). In this \textit{Perspective} article, we provide a historical overview of BSE, with a particular focus on its condensed-matter roots. We also propose a critical review of its strengths and weaknesses in different chemical situations.