论文标题

在旋转陷阱中的一些稀疏的费尔米接触式超电原子中,分数量子霍尔物理学和高阶动量相关性

Fractional quantum Hall physics and higher-order momentum correlations in a few spinful fermionic contact-interacting ultracold atoms in rotating traps

论文作者

Yannouleas, Constantine, Landman, Uzi

论文摘要

理论上研究了分数量子大厅效应(FQHE),并采用数值和代数方法研究,在几个稀疏的少数超低超电位中性费米原子的组装中,通过排斥接触电位进行交互,并限制在单个快速旋转的二维式谐波中。超越了实际配置空间中常用的二阶相关性,本文中的方法将通过为$ n $ n $ n $ body-body-body-body旋转旋转 - 旋转 - 旋转,旋转分辨,动量相关性的基准结果来帮助分析实验观察,并在fimeplight实验中可测量单个粒子检测。我们的分析表明,具有良好魔法角动量的最低体最低级别(LLL)状态在$ n $体体相关性中表现出固有的有序量子结构,类似于与旋转的Wigner Molecules(WMS)相似的,该结构在高磁场下与半导体量子点的旋转场所熟悉。在随之而来的避免的横梁上,小扰动的搅拌电势诱导,对称性破碎状态的形成表现出有序的多边形环结构,明确表现出在捕获粒子的单粒子密度谱中。远离十字路口,从微观哈密顿量的精确对角线获得的LLL状态,发现被A(1,1,1)Halperin两个分量变化波函数很好地描述了,也代表了一个稀疏的旋转WM。对计算出的LLL波函数的分析使Girardeau一维“费米化”方案的二维概括最初是为了将波索型型波函数映射到无旋转费米子的绘制。

The fractional quantum Hall effect (FQHE) is theoretically investigated, with numerical and algebraic approaches, in assemblies of a few spinful ultracold neutral fermionic atoms, interacting via repulsive contact potentials and confined in a single rapidly rotating two-dimensional harmonic trap. Going beyond the commonly used second-order correlations in the real configuration space, the methodology in this paper will assist the analysis of experimental observations by providing benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection. Our analysis shows that the few-body lowest-Landau-level (LLL) states with good magic angular momenta exhibit inherent ordered quantum structures in the $N$-body correlations, similar to those associated with rotating Wigner molecules (WMs), familiar from the field of semiconductor quantum dots under high magnetic fields. The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures, explicitly manifest in the single-particle density profile of the trapped particles. Away from the crossings, an LLL state obtained from exact diagonalization of the microscopic Hamiltonian, found to be well-described by a (1,1,1) Halperin two-component variational wavefunction, represents also a spinful rotating WM. Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源