论文标题
eu2zniro6中EU3+的晶格,自旋和内置激发的耦合
Coupling of lattice, spin and intra-configurational excitations of Eu3+ in Eu2ZnIrO6
论文作者
论文摘要
在EU2ZNIRO6中,有效的两个原子是活性的,即IR具有磁性活性,从而在低温下会导致IR Sublattice内部的复杂磁性排序。另一方面,尽管欧盟是Van-vleck Paramagnet,但它在涉及4F 6晶体场分裂水平的电子通道中活跃。晶格振动的量子,涉及晶胞中原子振动的量子,与磁性和电子自由度(DOF)紧密耦合。在这里,我们报告了一项针对声子以及双重植物EU2ZNIRO6中的综合研究的全面研究。我们的研究揭示了声子与良好的磁磁DOF的强耦合在声子自动能力参数的重新归一化中反映在自旋 - 固相(TN〜12 K)上方,直到温度高至〜3TN,这证明了损坏的自旋旋转旋转旋转旋转旋转深入到磁磁相中。特别是,所有观察到的一阶声子模式均显示出低于3tn的变化程度的软化,而低频声子变得更加敏锐,而高频声子则显示出宽广的宽广,归因于其他可用的磁性阻尼通道。我们还观察到了大量的高能量模式,总共39个,归因于稀土EU3+离子4F级之间的电子过渡,这些模式显示出异常的温度演化以及归因于晶体场分裂水平的混合,归因于归因于电子和曲植物dof的强伴侣。
In Eu2ZnIrO6, effectively two atoms are active i.e. Ir is magnetically active, which results in complex magnetic ordering within the Ir sublattice at low temperature. On the other hand, although Eu is a van-vleck paramagnet, it is active in the electronic channels involving 4f 6 crystal-field split levels. Phonons, quanta of lattice vibration, involving vibration of atoms in the unit cell, are intimately coupled with both magnetic and electronic degrees of freedom (DoF). Here, we report a comprehensive study focusing on the phonons as well as intra-configurational excitations in double-perovskite Eu2ZnIrO6. Our studies reveal strong coupling of phonons with the underlying magnetic DoF reflected in the renormalization of the phonon self-energy parameters well above the spin-solid phase (TN ~ 12 K) till temperature as high as ~ 3TN, evidences broken spin rotational symmetry deep into the paramagnetic phase. In particular, all the observed first-order phonon modes show softening of varying degree below ~3TN, and low-frequency phonons become sharper, while the high-frequency phonons show broadening attributed to the additional available magnetic damping channels. We also observed a large number of high-energy modes, 39 in total, attributed to the electronic transitions between 4f-levels of the rare-earth Eu3+ ion and these modes shows anomalous temperature evolution as well as mixing of the crystal-field split levels attributed to the strong coupling of electronic and lattice DoF.