论文标题

非线性在动量空间和真实空间中引起的拓扑物理

Nonlinearity induced topological physics in momentum space and real space

论文作者

Tuloup, Thomas, Bomantara, Raditya Weda, Lee, Ching Hua, Gong, Jiangbin

论文摘要

在动量空间和真实空间中研究了非线性晶格系统中非线性诱导的拓扑特性。通过KERR对光子波导系统的效应实验可以实现的实验性,我们的工作模型描绘了添加到Su-Schrieffer-Heeger(SSH)模型的现场非线性以及手性对称性破坏项。在周期性边界条件下,随着非线性强度的增加,两个非线性能带接近手性对称SSH模型的能带。此外,我们对Zak阶段进行了校正,并获得了非线性Zak相的一般表达。对于足够强的非线性,发现所有非线性ZAK阶段的总和(不是所有常规Zak阶段的总和)均已量化。在实际空间中,发现非线性孤子子与相关手性对称线性系统的拓扑保护边缘状态之间存在很强的相互作用。非线性可以恢复两个边缘孤子状态之间的堕落,尽管手性对称性破坏项。即使相关的线性系统处于拓扑琐事状态,我们也揭示了间隙孤子的拓扑起源。这些动量空间和真实空间的结果清楚地证明了非线性引起的新拓扑特征,表明非线性晶格系统中的拓扑物理学比以前想象的要丰富。

Nonlinearity induced topological properties in nonlinear lattice systems are studied in both momentum space and real space. Experimentally realizable through the Kerr effect on photonic waveguide systems, our working model depicts on-site nonlinearity added to the Su-Schrieffer-Heeger (SSH) model plus a chiral-symmetry breaking term. Under the periodic-boundary condition, two of the nonlinear energy bands approach the energy bands of the chiral-symmetric SSH model as nonlinearity strength increases. Further, we account for a correction to the Zak phase and obtain a general expression for nonlinear Zak phases. For sufficiently strong nonlinearity, the sum of all nonlinear Zak phases (not the sum of all conventional Zak phases) is found to be quantized. In real space, it is discovered that there is a strong interplay between nonlinear solitons and the topologically protected edge states of the associated chiral-symmetric linear system. Nonlinearity can recover the degeneracy between two edge soliton states, albeit a chiral-symmetry breaking term. We also reveal the topological origin of in-gap solitons even when the associated linear system is in the topological trivial regime. These momentum-space and real-space results have clearly demonstrated new topological features induced by nonlinearity, indicating that topological physics in nonlinear lattice systems is far richer than previously thought.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源