论文标题

素描引导的风景图像支出

Sketch-Guided Scenery Image Outpainting

论文作者

Wang, Yaxiong, Wei, Yunchao, Qian, Xueming, Zhu, Li, Yang, Yi

论文摘要

现有方法产生的支出结果通常太随机了,无法满足用户的要求。在这项工作中,我们通过允许用户使用草图作为指导来收集个人自定义支出结果,从而将图像提前一步。为此,我们提出了一个基于编码器的网络,以进行草图引导的支出,其中采用了两个对齐模块,以强加生成的内容是现实的,并且与所提供的草图一致。首先,我们应用一个整体对齐模块,使合成部分与全球视图中的真实部分相似。其次,我们从合成的部分中反复产生草图,并鼓励它们使用草图对准模块与地面真相保持一致。这样,学到的发电机将被强加于更多地关注细节,并对指导草图敏感。据我们所知,这项工作是探索具有挑战性但有意义的有条件风景图像的首次尝试。与其他最先进的生成模型相比,我们对两个收集的基准进行了广泛的实验,以定性和定量验证我们的方法的有效性。

The outpainting results produced by existing approaches are often too random to meet users' requirement. In this work, we take the image outpainting one step forward by allowing users to harvest personal custom outpainting results using sketches as the guidance. To this end, we propose an encoder-decoder based network to conduct sketch-guided outpainting, where two alignment modules are adopted to impose the generated content to be realistic and consistent with the provided sketches. First, we apply a holistic alignment module to make the synthesized part be similar to the real one from the global view. Second, we reversely produce the sketches from the synthesized part and encourage them be consistent with the ground-truth ones using a sketch alignment module. In this way, the learned generator will be imposed to pay more attention to fine details and be sensitive to the guiding sketches. To our knowledge, this work is the first attempt to explore the challenging yet meaningful conditional scenery image outpainting. We conduct extensive experiments on two collected benchmarks to qualitatively and quantitatively validate the effectiveness of our approach compared with the other state-of-the-art generative models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源