论文标题
关于耐力代数的自动形态群体
On Automorphism Groups of Hardy Algebras
论文作者
论文摘要
令$ e $为$ w^{*} $ - 通信,让$ h^{\ infty}(e)$为关联的hardy代数。 Intertwiners $ \ Mathbb {D}((E^σ)^{*})$的单位光盘在$ H^{\ infty}(e)$的研究中起着核心作用。我们显示了许多与$ h^{\ infty}(e)$和$ \ mathbb {d}}((E^σ)^{*})$的自动形态组相关的结果。我们找到了这些组的矩阵表示形式,并描述了其代数结构的几个特征。此外,我们将$ aut(\ mathbb {d}({(e^σ})^*))$展示了$ w^{*} $ - 通讯的Morita等效性的研究。
Let $E$ be a $W^{*}$-correspondence and let $H^{\infty}(E)$ be the associated Hardy algebra. The unit disc of intertwiners $\mathbb{D}((E^σ)^{*})$ plays a central role in the study of $H^{\infty}(E)$. We show a number of results related to the automorphism groups of both $H^{\infty}(E)$ and $\mathbb{D}((E^σ)^{*})$. We find a matrix representation for these groups and describe several features of their algebraic structure. Furthermore, we show an application of $Aut(\mathbb{D}({(E^σ})^*))$ to the study of Morita equivalence of $W^{*}$-correspondences.