论文标题

神经流形的普通微分方程

Neural Manifold Ordinary Differential Equations

论文作者

Lou, Aaron, Lim, Derek, Katsman, Isay, Huang, Leo, Jiang, Qingxuan, Lim, Ser-Nam, De Sa, Christopher

论文摘要

为了更好地符合数据几何形状,最近的深层生成建模技术将欧几里得构造适应非欧几里得空间。在本文中,我们研究了在歧管上的归一化流。先前的工作已经开发了针对特定情况的流模型。但是,这些进步的手工艺层是逐个式的基础,限制了普遍性并引起了繁琐的设计约束。我们通过引入神经歧管的普通微分方程(神经odes的歧管概括)来克服这些问题,从而实现了歧管连续归一化流(MCNF)的构建。 MCNF仅需要局部几何形状(因此将其推广到任意流形),并随着变量的持续更改(允许简单而表达的流动构建)进行计算概率。我们发现,利用连续流动动力学对密度估计和下游任务产生明显的改进。

To better conform to data geometry, recent deep generative modelling techniques adapt Euclidean constructions to non-Euclidean spaces. In this paper, we study normalizing flows on manifolds. Previous work has developed flow models for specific cases; however, these advancements hand craft layers on a manifold-by-manifold basis, restricting generality and inducing cumbersome design constraints. We overcome these issues by introducing Neural Manifold Ordinary Differential Equations, a manifold generalization of Neural ODEs, which enables the construction of Manifold Continuous Normalizing Flows (MCNFs). MCNFs require only local geometry (therefore generalizing to arbitrary manifolds) and compute probabilities with continuous change of variables (allowing for a simple and expressive flow construction). We find that leveraging continuous manifold dynamics produces a marked improvement for both density estimation and downstream tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源