论文标题

量化支持学习的系统中的保证

Quantifying Assurance in Learning-enabled Systems

论文作者

Asaadi, Erfan, Denney, Ewen, Pai, Ganesh

论文摘要

系统嵌入机器学习(ML)组件的可靠性保证---所谓的支持学习的系统(LINS) - - 是它们在安全至关重要应用中使用的关键步骤。在新兴的标准化和指导工作中,为此目的使用保证案例的价值越来越共识。本文提出了一个定量的保证概念,即LE是可靠的,作为其保证案例的核心组成部分,也扩展了我们先前应用于ML组件的工作。具体而言,我们以保证度量的形式表征了LES保证:LE具有与功能能力和可靠性属性相关的系统级特性的信心的概率量化。我们说明了通过在现实世界自主航空系统中应用保证措施的实用性,还描述了它们在i)指导高级,运行时风险缓解决策和ii)中的作用。

Dependability assurance of systems embedding machine learning(ML) components---so called learning-enabled systems (LESs)---is a key step for their use in safety-critical applications. In emerging standardization and guidance efforts, there is a growing consensus in the value of using assurance cases for that purpose. This paper develops a quantitative notion of assurance that an LES is dependable, as a core component of its assurance case, also extending our prior work that applied to ML components. Specifically, we characterize LES assurance in the form of assurance measures: a probabilistic quantification of confidence that an LES possesses system-level properties associated with functional capabilities and dependability attributes. We illustrate the utility of assurance measures by application to a real world autonomous aviation system, also describing their role both in i) guiding high-level, runtime risk mitigation decisions and ii) as a core component of the associated dynamic assurance case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源