论文标题
具有可调尺寸的复杂网络作为通用操场
Complex networks with tuneable dimensions as a universality playground
论文作者
论文摘要
普遍性是理解关键现象的关键概念之一。但是,对于复杂网络描述的相互作用的不均匀系统,仍然缺少对普遍性相关参数的清晰理解。在这里,我们讨论了基本网络参数在普遍性(光谱维度)中的作用。为此,我们构建了一个复杂的网络模型,其中两个节点之间键的概率与节点距离的功率定律成正比。通过显式计算,我们证明该模型的频谱维度可以从$ 1 $连续调整为Infinity,我们讨论了相关的网络连接度量。我们建议我们的模型作为一种工具,以探测不均匀结构的普遍行为,并评论此类网络上相关模型的普遍行为模仿分数欧几里得维度中连续的现场理论之一。
Universality is one of the key concepts in understanding critical phenomena. However, for interacting inhomogeneous systems described by complex networks a clear understanding of the relevant parameters for universality is still missing. Here we discuss the role of a fundamental network parameter for universality, the spectral dimension. For this purpose, we construct a complex network model where the probability of a bond between two nodes is proportional to a power law of the nodes' distances. By explicit computation we prove that the spectral dimension for this model can be tuned continuously from $1$ to infinity, and we discuss related network connectivity measures. We propose our model as a tool to probe universal behaviour on inhomogeneous structures and comment on the possibility that the universal behaviour of correlated models on such networks mimics the one of continuous field theories in fractional Euclidean dimensions.