论文标题

超越广告/CFT的秋千表面和全息纠缠

Swing surfaces and holographic entanglement beyond AdS/CFT

论文作者

Apolo, Luis, Jiang, Hongliang, Song, Wei, Zhong, Yuan

论文摘要

我们在两种型号的全息/cft中,建议对通用状态和地区的全息纠缠熵处方,称为flats $ _3 $ _3 $/bmsft和(w)$ _3 $/wcft。 Flat $ _3 $/BMSFT是渐近平面三维空间的全息候选者,而(w)$ _3 $/wcft($ _3 $/wcft)与现实世界中黑洞的研究相关。特别是,边界理论是量子场理论的示例,这些理论具有无限的尺寸对称群,但破坏了洛伦兹的不变性。我们的全息纠缠熵提案由由绳索组成的摆动表面的面积给出,这些绳索是从边界处的纠缠表面散发出的无效的大地测量学,而板凳则是一个连接绳索的间距类似地球的板凳。该提案得到了Lewkowycz-Maldacena论点的扩展,基于Rindler方法再现了先前的结果,并满足了纠缠熵的第一定律。

We propose a holographic entanglement entropy prescription for general states and regions in two models of holography beyond AdS/CFT known as flat$_3$/BMSFT and (W)AdS$_3$/WCFT. Flat$_3$/BMSFT is a candidate of holography for asymptotically flat three-dimensional spacetimes, while (W)AdS$_3$/WCFT is relevant in the study of black holes in the real world. In particular, the boundary theories are examples of quantum field theories that feature an infinite dimensional symmetry group but break Lorentz invariance. Our holographic entanglement entropy proposal is given by the area of a swing surface that consists of ropes, which are null geodesics emanating from the entangling surface at the boundary, and a bench, which is a spacelike geodesic connecting the ropes. The proposal is supported by an extension of the Lewkowycz-Maldacena argument, reproduces previous results based on the Rindler method, and satisfies the first law of entanglement entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源