论文标题
定量非变异和较低的界限,该点具有代数坐标附近的代数坐标
Quantitative non-divergence and lower bounds for points with algebraic coordinates near manifolds
论文作者
论文摘要
点计数估计值是对公制二磷酸近似值各种结果的关键垫脚石。在本文中,我们使用Kleinbock和Margulis最初开发的定量非变异估计值来改善Bernik,Götze等人的下限。对于代数共轭坐标的点数,接近给定的歧管。在此过程中,我们还改进了khinchin-groshev型定理,以通过多项式约束近似问题。
Point counting estimates are a key stepping stone to various results in metric Diophantine approximation. In this paper we use the quantitative non-divergence estimates originally developed by Kleinbock and Margulis to improve lower bounds by Bernik, Götze et al. for the number of points with algebraic conjugate coordinates close to a given manifold. In the process, we also improve on a Khinchin-Groshev-type theorem for a problem of constrained approximation by polynomials.