论文标题

在顺序皮肤镜图像上具有时空特征学习的黑色素瘤诊断

Melanoma Diagnosis with Spatio-Temporal Feature Learning on Sequential Dermoscopic Images

论文作者

Yu, Zhen, Nguyen, Jennifer, Chang, Xiaojun, Kelly, John, Mclean, Catriona, Zhang, Lei, Mar, Victoria, Ge, Zongyuan

论文摘要

现有的自动黑色素瘤诊断研究基于病变的单时间点图像。然而,事实上的黑色素细胞病变正在逐渐发展,而且,良性病变可以发展为恶性黑色素瘤。因此,忽略病变的跨时间形态变化可能会导致边缘病例误诊。基于皮肤科医生通过随时间检查来评估皮肤镜的变化来诊断皮肤病变的事实,在这项研究中,我们提出了一个使用顺序皮肤镜面图像的自动化框架,用于诊断黑色素瘤诊断。为了捕获皮肤镜进化的时空表征,我们在两流网络体系结构中构建了模型,该模型能够同时学习单个病变的外观表示,同时在原始像素差和抽象特征差异上执行时间推理。我们收集184例系列皮肤镜图像数据,由组织学确认的92个良性病变和92个黑色素瘤病变组成,以评估所提出方法的有效性。我们的模型达到的AUC为74.34%,比仅使用单个图像的AUC高约8%,比基于LSTM的广泛使用的序列学习模型高约6%。

Existing studies for automated melanoma diagnosis are based on single-time point images of lesions. However, melanocytic lesions de facto are progressively evolving and, moreover, benign lesions can progress into malignant melanoma. Ignoring cross-time morphological changes of lesions thus may lead to misdiagnosis in borderline cases. Based on the fact that dermatologists diagnose ambiguous skin lesions by evaluating the dermoscopic changes over time via follow-up examination, in this study, we propose an automated framework for melanoma diagnosis using sequential dermoscopic images. To capture the spatio-temporal characterization of dermoscopic evolution, we construct our model in a two-stream network architecture which capable of simultaneously learning appearance representations of individual lesions while performing temporal reasoning on both raw pixels difference and abstract features difference. We collect 184 cases of serial dermoscopic image data, which consists of histologically confirmed 92 benign lesions and 92 melanoma lesions, to evaluate the effectiveness of the proposed method. Our model achieved AUC of 74.34%, which is ~8% higher than that of only using single images and ~6% higher than the widely used sequence learning model based on LSTM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源