论文标题
关于非线性schr {Ö} dinger方程的多态的平稳性和独特性
On smoothness and uniqueness of multi-solitons of the non-linear Schr{ö}dinger equations
论文作者
论文摘要
在本文中,我们研究了与一般非线性的r^d中非线性schr {Ö} dinger方程的多solitons的一些特性。 Multi-Solitons已经在H^1中由Merle,Martel和Merle以及C {te,Martel和Merle构建。我们在这里表明,根据非线性的规律性,多solitons是平滑的。我们还获得了某些班级独特性的结果,无论是在基态稳定时还是在质量关键的情况下。
In this paper, we study some properties of multi-solitons for the non-linear Schr{ö}dinger equations in R^d with general non-linearities. Multi-solitons have already been constructed in H^1, successively by Merle, by Martel and Merle, and by C{ô}te, Martel and Merle. We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case.