论文标题

一种基于机器学习的方法,用于估计扩散加权磁共振成像中主要束的数量和方向

A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging

论文作者

Karimi, Davood, Vasung, Lana, Jaimes, Camilo, Machado-Rivas, Fedel, Khan, Shadab, Warfield, Simon K., Gholipour, Ali

论文摘要

扩散加权磁共振成像测量的多室建模对于精确的大脑连接性分析是必要的。估计成像体素中束的数量和方向的现有方法取决于对初始化和测量噪声敏感的非凸优化技术,或者容易预测虚假筋膜。在本文中,我们提出了一种基于机器学习的技术,该技术可以准确估计体素中束的数量和方向。我们的方法可以通过模拟或实际扩散加权成像数据进行训练。我们的方法估计了一组离散方向在单位球体上均匀扩散的每个方向最接近的筋膜的角度。然后处理此信息以提取体voxel中束的数量和方向。在具有已知地面真理的现实模拟幻影数据上,我们的方法比几种现有方法更准确地预测了穿越束的数量和方向。这也导致更准确的拖拉术。在实际数据上,我们的方法比鲁棒性与测量下采样以及拖拉术结果的专家质量评估方面相比,或与标准方法进行比较。

Multi-compartment modeling of diffusion-weighted magnetic resonance imaging measurements is necessary for accurate brain connectivity analysis. Existing methods for estimating the number and orientations of fascicles in an imaging voxel either depend on non-convex optimization techniques that are sensitive to initialization and measurement noise, or are prone to predicting spurious fascicles. In this paper, we propose a machine learning-based technique that can accurately estimate the number and orientations of fascicles in a voxel. Our method can be trained with either simulated or real diffusion-weighted imaging data. Our method estimates the angle to the closest fascicle for each direction in a set of discrete directions uniformly spread on the unit sphere. This information is then processed to extract the number and orientations of fascicles in a voxel. On realistic simulated phantom data with known ground truth, our method predicts the number and orientations of crossing fascicles more accurately than several existing methods. It also leads to more accurate tractography. On real data, our method is better than or compares favorably with standard methods in terms of robustness to measurement down-sampling and also in terms of expert quality assessment of tractography results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源