论文标题

深度转化不变的聚类

Deep Transformation-Invariant Clustering

论文作者

Monnier, Tom, Groueix, Thibault, Aubry, Mathieu

论文摘要

图像聚类的最新进展通常集中于学习更好的深度表示。相比之下,我们提出了一种正交方法,该方法不依赖抽象功能,而是学会了预测图像转换并直接在图像空间中执行聚类。该学习过程自然适合基于K-均值和高斯混合模型的基于梯度的培训,而无需任何额外的损失或超参数。它导致我们建立了两个新的深层转换不变的聚类框架,共同学习原型和转换。更具体地说,我们使用深度学习模块,使我们能够将不变性解决到空间,颜色和形态转换。我们的方法在概念上很简单,并且具有几个优点,包括可以轻松使所需不变性适应任务的可能性,以及集群中心和分配群体的强烈解释性。我们证明,我们的新方法在标准图像聚类基准测试基准上产生竞争性和高度有希望的结果。最后,我们通过可视化聚类结果而不是真实的照片收集来展示其稳健性和改进的可解释性的优势。

Recent advances in image clustering typically focus on learning better deep representations. In contrast, we present an orthogonal approach that does not rely on abstract features but instead learns to predict image transformations and performs clustering directly in image space. This learning process naturally fits in the gradient-based training of K-means and Gaussian mixture model, without requiring any additional loss or hyper-parameters. It leads us to two new deep transformation-invariant clustering frameworks, which jointly learn prototypes and transformations. More specifically, we use deep learning modules that enable us to resolve invariance to spatial, color and morphological transformations. Our approach is conceptually simple and comes with several advantages, including the possibility to easily adapt the desired invariance to the task and a strong interpretability of both cluster centers and assignments to clusters. We demonstrate that our novel approach yields competitive and highly promising results on standard image clustering benchmarks. Finally, we showcase its robustness and the advantages of its improved interpretability by visualizing clustering results over real photograph collections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源