论文标题

超快孔旋转值,带栅极可调的旋转轨道开关

Ultrafast Hole Spin Qubit with Gate-Tunable Spin-Orbit Switch

论文作者

Froning, F. N. M., Camenzind, L. C., van der Molen, O. A. H., Li, A., Bakkers, E. P. A. M., Zumbühl, D. M., Braakman, F. R.

论文摘要

量子计算中的一个关键挑战是实施快速和局部量子置控制,同时保持连贯性。基于孔旋转的Qubits通过其强大的自旋轨道相互作用提供了实现快速量子门的一种方法。令人惊讶的是,对于一维锗和硅设备中的孔旋转,旋转轨道相互作用被预测在栅极电压的情况下非常强但高度可调。这样的电气控制将使量子怠速和操纵模式之间的需求进行按需转换。在这里,我们演示了在锗/硅芯/壳纳米线中的孔自旋量子置矩置矩值的超快速和通用量子控制,狂犬病频率为数百兆赫,对应于〜1 ns的旋转液压时间 - 单型旋转量子器的新记录。接下来,我们显示了对狂犬病频率,采能和连贯时间的大量电气控制 - 从而实现了从快速量子操作模式到更连贯的空转模式的开关。我们将异常强但可触摸的旋转轨道相互作用视为基础机制,其短相关的自旋长度可以在较大范围内调整至3 nm,以使其对重孔质量的孔进行调节。我们的工作展示了一个自旋轨量子开关,并建立了在一维锗/硅纳米结构中定义的孔旋转矩形,作为量子计算的快速且高度可调的平台。

A key challenge in quantum computation is the implementation of fast and local qubit control while simultaneously maintaining coherence. Qubits based on hole spins offer, through their strong spin-orbit interaction, a way to implement fast quantum gates. Strikingly, for hole spins in one-dimensional germanium and silicon devices, the spin-orbit interaction has been predicted to be exceptionally strong yet highly tunable with gate voltages. Such electrical control would make it possible to switch on demand between qubit idling and manipulation modes. Here, we demonstrate ultrafast and universal quantum control of a hole spin qubit in a germanium/silicon core/shell nanowire, with Rabi frequencies of several hundreds of megahertz, corresponding to spin-flipping times as short as ~1 ns - a new record for a single-spin qubit. Next, we show a large degree of electrical control over the Rabi frequency, Zeeman energy, and coherence time - thus implementing a switch toggling from a rapid qubit manipulation mode to a more coherent idling mode. We identify an exceptionally strong but gate-tunable spin-orbit interaction as the underlying mechanism, with a short associated spin-orbit length that can be tuned over a large range down to 3 nm for holes of heavy-hole mass. Our work demonstrates a spin-orbit qubit switch and establishes hole spin qubits defined in one-dimensional germanium/silicon nanostructures as a fast and highly tunable platform for quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源