论文标题
使用诱导的电子密度对限值碳纳米管的场发射增强因子进行建模
Modeling the Field Emission Enhancement Factor for Capped Carbon Nanotubes using the Induced Electron Density
论文作者
论文摘要
在单壁碳纳米管(SWCNT)上的许多现场电子发射实验中,SWCNT位于两个良好分离的平行平板之一上,它们之间使用了宏观场FM。对于SWCNT表面上的任何给定位置“ L”,场增强因子(FEF)的定义为$ f _ {\ rm {l}} $/$/$ f _ {\ rm {m {m}} $,其中$ f _ {\ rm {lm {l}} $是定义的本地领域。小型Radii限制的SWCNT的最佳排放测量表现出恒定的特征FEF(即,独立于$ f _ {\ rm {m}} $)。本文讨论了如何通过量子力学(与经典静电)计算来检索这一结果。密度函数理论(DFT)用于分析两个短浮动SWCNT的性质,两端封顶,即A(6,6)和A(10,0)结构。两者实际上具有相同的高度($ \ sim 5.46 $ nm)和半径($ \ sim 0.42 $ nm)。发现局部诱导的FEF的顶点值在两个SWCNT中相似,独立于$ f _ {\ rm {m}} $,并且与从经典导体模型中发现的FEF值相似。建议这些诱导的fef值与SWCNT纵向系统极化有关,这些纵向系统被认为相似。 DFT计算还会产生“真实”,而不是``诱导的'','诱导的两个SWCNT的潜在能力(PE)障碍,用于FM值,从3 V/$μ$ m到2 V/nm。沿SWCNT轴以及沿SWCNT轴以及沿平行的“观察线”到最高的them the the the the the the the the the the poptoms的PE配置文件。在低宏观场上,两种SWCNT类型的屏障形状的细节不同。即使对于$ f _ {\ rm {m}} = 0 $,也存在于发射极端的不同PE结构(两个SWCNT的不同);这表明存在结构特异性化学诱导的电荷转移和相关的斑块场分布。
In many field electron emission experiments on single-walled carbon nanotubes (SWCNTs), the SWCNT stands on one of two well-separated parallel plane plates, with a macroscopic field FM applied between them. For any given location "L" on the SWCNT surface, a field enhancement factor (FEF) is defined as $F_{\rm{L}}$/$F_{\rm{M}}$, where $F_{\rm{L}}$ is a local field defined at "L". The best emission measurements from small-radii capped SWCNTs exhibit characteristic FEFs that are constant (i.e., independent of $F_{\rm{M}}$). This paper discusses how to retrieve this result in quantum-mechanical (as opposed to classical electrostatic) calculations. Density functional theory (DFT) is used to analyze the properties of two short, floating SWCNTS, capped at both ends, namely a (6,6) and a (10,0) structure. Both have effectively the same height ($\sim 5.46$ nm) and radius ($\sim 0.42$ nm). It is found that apex values of local induced FEF are similar for the two SWCNTs, are independent of $F_{\rm{M}}$, and are similar to FEF-values found from classical conductor models. It is suggested that these induced-FEF values relate to the SWCNT longitudinal system polarizabilities, which are presumed similar. The DFT calculations also generate "real", as opposed to ``induced", potential-energy (PE) barriers for the two SWCNTs, for FM-values from 3 V/$μ$m to 2 V/nm. PE profiles along the SWCNT axis and along a parallel ``observation line" through one of the topmost atoms are similar. At low macroscopic fields the details of barrier shape differ for the two SWCNT types. Even for $F_{\rm{M}}=0$, there are distinct PE structures present at the emitter apex (different for the two SWCNTs); this suggests the presence of structure-specific chemically induced charge transfers and related patch-field distributions.