论文标题

通过网络尺度推荐系统进行后处理来实现公平性

Achieving Fairness via Post-Processing in Web-Scale Recommender Systems

论文作者

Nandy, Preetam, Diciccio, Cyrus, Venugopalan, Divya, Logan, Heloise, Basu, Kinjal, Karoui, Noureddine El

论文摘要

建立公平的推荐系统是一个具有挑战性且至关重要的研究领域,因为它对社会产生了巨大影响。我们将两个普遍公认的公平概念的定义扩展到了推荐系统,即机会平等和均衡的赔率。这些公平措施确保同样对待“合格”(或“不合格的”)候选人,无论其受保护的属性状况如何(例如性别或种族)。我们提出了可扩展的方法,以实现机会平等和在存在偏差的存在下排名平等,这通常会困扰推荐系统产生的数据。我们的算法是模型不可知论,因为它们仅依赖于模型提供的最终分数,因此很容易适用于几乎所有Web尺度推荐系统。我们进行广泛的模拟以及现实世界实验,以显示我们方法的功效。

Building fair recommender systems is a challenging and crucial area of study due to its immense impact on society. We extended the definitions of two commonly accepted notions of fairness to recommender systems, namely equality of opportunity and equalized odds. These fairness measures ensure that equally "qualified" (or "unqualified") candidates are treated equally regardless of their protected attribute status (such as gender or race). We propose scalable methods for achieving equality of opportunity and equalized odds in rankings in the presence of position bias, which commonly plagues data generated from recommender systems. Our algorithms are model agnostic in the sense that they depend only on the final scores provided by a model, making them easily applicable to virtually all web-scale recommender systems. We conduct extensive simulations as well as real-world experiments to show the efficacy of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源