论文标题

如果中子星形最大质量超过$ \ sim2.3 m _ {\ odot} $,该怎么办?

What if the neutron star maximum mass is beyond $\sim2.3 M_{\odot}$?

论文作者

Wu, Xuhao, Du, Shuang, Xu, Renxin

论文摘要

通过假设GW170817合并事件后不久,Shibata等人的合并事件形成。 updated the constraints on the maximum mass ($M_\textrm{max}$) of a stable neutron star within $\lesssim$ 2.3 $M_{\odot}$, but there is no solid evidence to rule out $M_\textrm{max}>2.3~M_{\odot}$ from the point of both microphysical and astrophysical views.为了解释巨大的脉冲星,自然可以预期状态方程(EOS)将变得更加稳固。在本文中,我们考虑使用$ M_ \ textrm {max}> 2.3〜M _ {\ odot} $的EOSS的可能性,研究了多潮流模型中的刚度和过渡密度。考虑了两种中子恒星,即,正常的中子星(密度在重力结合的表面上消失)和奇怪的恒星(在自束表面上的急剧密度不连续)。在两种情况下,多向模型都只有两个参数输入:($ρ_{\ rm t} $,$γ$)用于重力结合对象,而($ρ_{\ rm s} $,$γ$)的自组为$ρ_{\ rm t} $ tmentive $ prime-trime-t} $ t} $ trimition t} $ ptriention $ ptriention $ ptrienti和$γ$ the totrodropic指数。 In the matter of $M_\textrm{max}>2.3~M_{\odot}$, it is found that the smallest $ρ_{\rm t}$ and $γ$ should be $\sim 0.50~ρ_0$ and $\sim 2.65$ for normal neutron stars, respectively, whereas for strange star, we have $γ> 1.40$ if $ρ_ {\ rm s}> 1.0〜ρ_0 $和$ρ_{\ rm s} <1.58〜ρ_0 $如果$γ<2.0 $($ρ_0$是核饱和度密度)。如果将来测量这些参数结果,则可以指导对实际EO的任何微生物学基础,并以任何微观物理学的基础进行研究。我们还得出了常见的中性星形半径范围的粗略结果,这是普通中子星的$ 9.8〜 \ rm {km} <r_ {1.4} <r_ {1.4} <13.8〜 \ rm {km {km} $,$ 10.5〜 \ rm {km {km {km {km} <r_ {1.4} <r_ {1.4} <12.5〜〜〜〜〜〜 \ rm rmmm}

By assuming the formation of a black hole soon after the merger event of GW170817, Shibata et al. updated the constraints on the maximum mass ($M_\textrm{max}$) of a stable neutron star within $\lesssim$ 2.3 $M_{\odot}$, but there is no solid evidence to rule out $M_\textrm{max}>2.3~M_{\odot}$ from the point of both microphysical and astrophysical views. In order to explain massive pulsars, it is naturally expected that the equation of state (EOS) would become stiffer beyond a specific density. In this paper, we consider the possibility of EOSs with $M_\textrm{max}>2.3~M_{\odot}$, investigating the stiffness and the transition density in a polytropic model. Two kinds of neutron stars are considered, i.e., normal neutron stars (the density vanishes on gravity-bound surface) and strange stars (a sharp density discontinuity on self-bound surface). The polytropic model has only two parameter inputs in both cases: ($ρ_{\rm t}$, $γ$) for gravity-bound objects, while ($ρ_{\rm s}$, $γ$) for self-bound ones, with $ρ_{\rm t}$ the transition density, $ρ_{\rm s}$ the surface density and $γ$ the polytropic exponent. In the matter of $M_\textrm{max}>2.3~M_{\odot}$, it is found that the smallest $ρ_{\rm t}$ and $γ$ should be $\sim 0.50~ρ_0$ and $\sim 2.65$ for normal neutron stars, respectively, whereas for strange star, we have $γ> 1.40$ if $ρ_{\rm s} > 1.0~ρ_0$ and $ρ_{\rm s} < 1.58~ρ_0$ if $γ<2.0$ ($ρ_0$ is the nuclear saturation density). These parametric results could guide further research of the real EOS with any foundation of microphysics if a pulsar mass higher than $2.3~M_{\odot}$ is measured in the future. We also derive rough results of common neutron star radius range, which is $9.8~\rm{km} < R_{1.4} < 13.8~\rm{km}$ for normal neutron stars and $10.5~\rm{km} < R_{1.4} < 12.5~\rm{km}$ for strange stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源