论文标题

从riccati方程的角度查看非振荡二阶线性微分方程

Viewing nonoscillatory second order linear differential equations from the angle of Riccati equations

论文作者

Jaros, Jaroslav, Kusano, Takashi, Tanigawa, Tomoyuki

论文摘要

我们为非振荡性的二阶差分方程式建立了一个存在理论(a)$(a)$(p(p(t)x')'= q(t)x,$ p(t)$和$ q(t)$和$ q(t)$在$ [a,\ indy)$上是积极的连续功能,其中一对riccati dincection nignial equientair nifections $' (r2)$ v'= 1/p(t) - q(t)v^2 $,与(a)关联。该理论的一个重要部分是构建一对线性独立的非振荡解决方案$ x_1(t)$和$ x_2(t)$(a)的$(a)$(a)在解决方案$ u_1(t)$和$ u_2(t)$(r1)$(r1)或在解决方案上或在解决方案$ v_1(t)$ v_1(t)$ 2(t)$ 2(t)(t)(r1(t)$ 2(t)(r1(t)$ 2(t)(r1(t))(r1(r1)$ u_1(t)$和$ u_2(t))(r1(t)$ 2(t)(r 2(t)))(r 2(t)2)

We build an existence theory for nonoscillatory second order differential equations of the form (A) $(p(t)x')' = q(t)x, $ $p(t)$ and $q(t)$ being positive continuous functions on $[a,\infty)$, in which a crucial role is played by a pair of the Riccati differential equations (R1) $u' = q(t) - u^2/p(t)$, (R2) $ v' = 1/p(t) - q(t)v^2$, associated with (A). An essential part of the theory is the construction of a pair of linearly independent nonoscillatory solutions $x_1(t)$ and $x_2(t)$ of (A) enjoying explicit exponential-integral representations in terms of solutions $u_1(t)$ and $u_2(t)$ of (R1) or in terms of solutions $v_1(t)$ and $v_2(t)$ of (R2).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源