论文标题
Koopman模式分析的应用到神经网络
Applications of Koopman Mode Analysis to Neural Networks
论文作者
论文摘要
我们将神经网络的训练过程视为作用于高维体重空间的动力系统。每个时期都是由优化算法和损耗函数引起的地图的应用。使用此诱导的地图,我们可以在重量空间上应用可观察物并测量其演变。可观察物的演变由与诱导动力学系统相关的Koopman操作员给出。我们使用Koopman操作员的频谱和模式来实现上述目标。我们的方法可以先验地确定网络深度;确定我们的网络权重初始化是否不良,允许在训练过长之前重新启动;加快训练时间。此外,我们的方法有助于实现噪声排斥并改善鲁棒性。我们展示了如何使用Koopman频谱来确定体系结构所需的层数。此外,我们展示了如何通过监测频谱,特别是如何通过监测特征值聚类的存在来确定何时终止学习过程来阐明训练过程的收敛与非连接过程。我们还展示了如何使用Koopman模式,我们可以选择性地修剪网络以加快训练程序。最后,我们表明,基于负Sobolev规范的损失函数可以允许重建由大量噪声污染的多尺度信号。
We consider the training process of a neural network as a dynamical system acting on the high-dimensional weight space. Each epoch is an application of the map induced by the optimization algorithm and the loss function. Using this induced map, we can apply observables on the weight space and measure their evolution. The evolution of the observables are given by the Koopman operator associated with the induced dynamical system. We use the spectrum and modes of the Koopman operator to realize the above objectives. Our methods can help to, a priori, determine the network depth; determine if we have a bad initialization of the network weights, allowing a restart before training too long; speeding up the training time. Additionally, our methods help enable noise rejection and improve robustness. We show how the Koopman spectrum can be used to determine the number of layers required for the architecture. Additionally, we show how we can elucidate the convergence versus non-convergence of the training process by monitoring the spectrum, in particular, how the existence of eigenvalues clustering around 1 determines when to terminate the learning process. We also show how using Koopman modes we can selectively prune the network to speed up the training procedure. Finally, we show that incorporating loss functions based on negative Sobolev norms can allow for the reconstruction of a multi-scale signal polluted by very large amounts of noise.