论文标题
经过修改的分级亨宁斯不变的量子组和修改的积分
Modified graded Hennings invariants from unrolled quantum groups and modified integral
论文作者
论文摘要
第二作者从与超级谎言代数$ \ mathfrak {sl}(2 | 1)$相关的展开的量子组中构建了一个拓扑成型霍夫夫代数。我们将这一事实推广到展开的量子组的背景下,并构建相关的拓扑成型霍普夫代数。然后,我们使用这样一个代数,离散的傅立叶变换,对称分级积分和修改的轨迹来定义修改的分级Hennings不变。最后,我们使用修改后的积分的概念将这种不变的变量扩展到空的歧管,并表明它恢复了CGP-Invariant。
The second author constructed a topological ribbon Hopf algebra from the unrolled quantum group associated with the super Lie algebra $\mathfrak{sl}(2|1)$. We generalize this fact to the context of unrolled quantum groups and construct the associated topological ribbon Hopf algebras. Then we use such an algebra, the discrete Fourier transforms, a symmetrized graded integral and a modified trace to define a modified graded Hennings invariant. Finally, we use the notion of a modified integral to extend this invariant to empty manifolds and show that it recovers the CGP-invariant.