论文标题
联合的半监督学习与委托人间的一致性和不相交的学习
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint Learning
论文作者
论文摘要
尽管现有的联合学习方法大多要求客户在现实的设置中进行全标签的数据训练,但在客户端获得的数据通常没有任何附带的标签。标签的这种缺乏可能是由于高标签成本或由于需要专家知识而引起的注释难度。因此,每个客户端的私人数据只能部分标记,也可以完全没有标记的标记数据,仅在服务器上可用,这使我们遇到了一个新的实用联合学习问题,即联合联盟的半惯用学习(FSSL)。在这项工作中,我们根据标记数据的位置研究了FSSL的两个基本情况。第一种情况考虑了一种常规的情况,在该情况下,客户端具有标记和未标记的数据(标签 - 客户标签),而第二种情况则考虑了一个更具挑战性的情况,其中仅在服务器上可用标签数据(标签 - 标签 - at-at-Server)。然后,我们提出了一种解决问题的新方法,我们将其称为联合匹配(FEDMATCH)。 FEDMATCH可以通过新的跨越基因一致性损失和参数分解,以在标记和未标记的数据上进行脱节学习,以改善联邦学习和半监督学习方法的幼稚组合。通过在两种不同情况下对我们方法的广泛实验验证,我们表明我们的方法的表现优于本地半监督学习和基线,这些学习和基线将联合学习与半监督学习结合在一起。该代码可在https://github.com/wyjeong/fedmatch上找到。
While existing federated learning approaches mostly require that clients have fully-labeled data to train on, in realistic settings, data obtained at the client-side often comes without any accompanying labels. Such deficiency of labels may result from either high labeling cost, or difficulty of annotation due to the requirement of expert knowledge. Thus the private data at each client may be either partly labeled, or completely unlabeled with labeled data being available only at the server, which leads us to a new practical federated learning problem, namely Federated Semi-Supervised Learning (FSSL). In this work, we study two essential scenarios of FSSL based on the location of the labeled data. The first scenario considers a conventional case where clients have both labeled and unlabeled data (labels-at-client), and the second scenario considers a more challenging case, where the labeled data is only available at the server (labels-at-server). We then propose a novel method to tackle the problems, which we refer to as Federated Matching (FedMatch). FedMatch improves upon naive combinations of federated learning and semi-supervised learning approaches with a new inter-client consistency loss and decomposition of the parameters for disjoint learning on labeled and unlabeled data. Through extensive experimental validation of our method in the two different scenarios, we show that our method outperforms both local semi-supervised learning and baselines which naively combine federated learning with semi-supervised learning. The code is available at https://github.com/wyjeong/FedMatch.