论文标题
神经细胞自动机歧管
Neural Cellular Automata Manifold
论文作者
论文摘要
最近,已经提出了神经细胞自动机(NCA)来模拟用深网络模拟形态发生过程。 NCA学会从固定的单像素开始生长图像。在这项工作中,我们表明,NCA的神经网络(NN)结构可以封装在较大的NN中。这使我们能够提出一个编码NCA多种模型的新模型,每个模型都能产生独特的图像。因此,我们正在有效地学习CA的嵌入空间,该空间显示了概括能力。我们通过在自动编码器体系结构中引入动态卷积来实现这一目标,这是首次加入两个不同信息来源,即编码和单元环境信息。从生物学的角度来看,我们的方法将起转录因子的作用,将基因映射到驱动细胞分化的特定蛋白中,该蛋白发生在形态发生之前。我们在合成表情符号的数据集以及CIFAR10的真实图像中彻底评估了我们的方法。我们的模型引入了通用网络,该网络可在图像生成以外的广泛问题中使用。
Very recently, the Neural Cellular Automata (NCA) has been proposed to simulate the morphogenesis process with deep networks. NCA learns to grow an image starting from a fixed single pixel. In this work, we show that the neural network (NN) architecture of the NCA can be encapsulated in a larger NN. This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image. Therefore, we are effectively learning an embedding space of CA, which shows generalization capabilities. We accomplish this by introducing dynamic convolutions inside an Auto-Encoder architecture, for the first time used to join two different sources of information, the encoding and cells environment information. In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation, which occurs right before the morphogenesis. We thoroughly evaluate our approach in a dataset of synthetic emojis and also in real images of CIFAR10. Our model introduces a general-purpose network, which can be used in a broad range of problems beyond image generation.