论文标题

体积频谱的亚加addive不平等

A sub-additive inequality for the volume spectrum

论文作者

Dey, Akashdeep

论文摘要

令$(m,g)$为封闭的riemannian歧管,$ \ {ω_p\} _ {p = 1}^{\ infty} $是$(m,g)$的音量频谱。我们将证明$ω_{k+m+1} \ leqω_k+ω_m+w $对于所有$ k,m \ geq 0 $,其中$ω_0= 0 $ and $ w $是单参数almgren-pitts $(m,g)$的单参数almgren-pitts。我们还将证明$ \ varepsilon $ -phase-transition spectrum $ \ {c _ {\ varepsilon}(p)\} _ {p = 1}^{\ infty} $使用Allen-cahn方法。

Let $(M,g)$ be a closed Riemannian manifold and $\{ω_p\}_{p=1}^{\infty}$ be the volume spectrum of $(M,g)$. We will show that $ω_{k+m+1}\leq ω_k+ω_m+W$ for all $k,m\geq 0$, where $ω_0=0$ and $W$ is the one-parameter Almgren-Pitts width of $(M,g)$. We will also prove the similar inequality for the $\varepsilon$-phase-transition spectrum $\{c_{\varepsilon}(p)\}_{p=1}^{\infty}$ using the Allen-Cahn approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源