论文标题

矩阵特征值的包含区域和界限

Inclusion regions and bounds for the eigenvalues of matrices with a known eigenpair

论文作者

Marsli, Rachid, Hall, Frank J.

论文摘要

令(λ,v)为正方形的真实矩阵A的已知真实特征。在本文中,它显示了如何根据v。v。所获得的区域的组件来定位A的其他特征值。两种情况是 根据V的某些组件是否等于零。以两种不同的方式获得上限,以除λ以外的其他绝对值,以最大的特征值获得。提供了详细的示例。尽管有些强调了非负不可约的矩阵,但本文的主要结果对于任何正方形的真实矩阵都是有效的。

Let (λ, v) be a known real eigenpair of a square real matrix A. In this paper it is shown how to locate the other eigenvalues of A in terms of the components of v. The obtained region is a union of Gershgorin discs of the second type recently introduced by the authors in a previous paper. Two cases are considered depending on whether or not some of the components of v are equal to zero. Upper bounds are obtained, in two different ways, for the largest eigenvalue in absolute value of A other than λ. Detailed examples are provided. Although nonnegative irreducible matrices are somewhat emphasized, the main results in this paper are valid for any square real matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源