论文标题
Riemann假设是错误的
The Riemann Hypothesis is false
论文作者
论文摘要
令$θ$表示Riemann Zeta函数零零部分的真实部位的至上。我们证明了$θ= 1 $,这需要无限的许多Riemann零在关键线之外的存在(因此反驳了Riemann假设(RH),这断言$θ= \ frac {1}} {1} {2} $)。该论文的结论是简要讨论了为什么我们的论点对Weil和Beurling Zeta函数不起作用,这些Zeta功能的类似物是真实的。
Let $Θ$ denote the supremum of the real parts of the zeros of the Riemann zeta function. We demonstrate that $Θ=1$, which entails the existence of infinitely many Riemann zeros off the critical line (thus disproving the Riemann Hypothesis (RH), which asserts that $Θ= \frac{1}{2}$). The paper is concluded by a brief discussion of why our argument doesn't work for both Weil and Beurling zeta functions whose analogues of the RH are known to be true.