论文标题

与第一原理精确度模拟复杂混合物中的溶剂化和酸度:ch $ _3 $的情况,$ _3 $ h和h $ _2 $ o $ $ $ _2 $ in苯酚

Simulating solvation and acidity in complex mixtures with first-principles accuracy: the case of CH$_3$SO$_3$H and H$_2$O$_2$ in phenol

论文作者

Rossi, Kevin, Juraskova, Veronika, Wischert, Raphael, Garel, Laurent, Corminboeuf, Clemence, Ceriotti, Michele

论文摘要

我们提出了一个普遍适用的计算框架,用于使用h $ _2 $ o $ _2 $和ch $ _3 $的分子结构模式和明确溶剂中的分子结构模式和酸性特性的有效,准确地表征,$ _3 $ so $ _3 $ h,因此作为示例。为了解决问题的复杂性所带来的挑战,我们求助于一组数据驱动的方法和增强的采样算法。这些技术的协同应用使得对化学性质的第一原则估计可行,而无需放弃使用显式溶剂化,涉及广泛的统计抽样。神经网络电位的集合会通过在低成本功能紧密结合(DFTB)水平进行的初步模拟中精心选择的一组配置进行训练。然后在混合密度功能理论(DFT)水平上重新计算这些构型的能量和力,并用于训练神经网络。通过使用DFTB能量作为基线来增强NN模型的稳定性,但是直接NN(即无基线)的效率是通过多个时间步骤集成器利用的。神经网络电位与增强的采样技术(例如复制交换和元动力学)结合在一起,并用于表征相关的质子化物种和混合物中显性的非共价相互作用,也考虑了核量子效应。

We present a generally-applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in explicit solvent using H$_2$O$_2$ and CH$_3$SO$_3$H in phenol as an example. In order to address the challenges posed by the complexity of the problem, we resort to a set of data-driven methods and enhanced sampling algorithms. The synergistic application of these techniques makes the first-principle estimation of the chemical properties feasible without renouncing to the use of explicit solvation, involving extensive statistical sampling. Ensembles of neural network potentials are trained on a set of configurations carefully selected out of preliminary simulations performed at a low-cost density-functional tight-binding (DFTB) level. The energy and forces of these configurations are then recomputed at the hybrid density functional theory (DFT) level and used to train the neural networks. The stability of the NN model is enhanced by using DFTB energetics as a baseline, but the efficiency of the direct NN (i.e., baseline-free) is exploited via a multiple-time step integrator. The neural network potentials are combined with enhanced sampling techniques, such as replica exchange and metadynamics, and used to characterize the relevant protonated species and dominant non-covalent interactions in the mixture, also considering nuclear quantum effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源