论文标题
通过因果跳跃动态模式分解的细菌中健身的预测
Prediction of fitness in bacteria with causal jump dynamic mode decomposition
论文作者
论文摘要
在本文中,我们考虑了学习人群细胞生长动态的预测模型的问题,这是媒体条件的函数。我们首先引入了一个通用数据驱动的框架,用于训练操作员理论模型,以预测细胞生长速率。然后,我们介绍了这项研究中产生的实验设计和数据,即假单胞菌的生长曲线是酪蛋白和葡萄糖浓度的函数。我们使用数据驱动的方法进行模型识别,特别是非线性自回旋(NAR)模型来表示动态。从理论上讲,我们表明Hankel DMD可用于获得NAR模型的解决方案。我们表明,它标识了受约束的NAR模型并获得更通用的解决方案,我们使用1步,2步,...,NAR模型的τ-step预测指标定义了因果状态空间系统,并使用扩展动态模式分解来确定该模型的Koopman操作员。我们称为因果关系动态模式分解的混合方案,我们在生长曲线或健身预测挑战上说明了这是不同输入增长条件的函数。我们表明,我们的模型能够以96.6%的精度概括训练曲线数据,并以91%的精度预测测试生长曲线数据。
In this paper, we consider the problem of learning a predictive model for population cell growth dynamics as a function of the media conditions. We first introduce a generic data-driven framework for training operator-theoretic models to predict cell growth rate. We then introduce the experimental design and data generated in this study, namely growth curves of Pseudomonas putida as a function of casein and glucose concentrations. We use a data driven approach for model identification, specifically the nonlinear autoregressive (NAR) model to represent the dynamics. We show theoretically that Hankel DMD can be used to obtain a solution of the NAR model. We show that it identifies a constrained NAR model and to obtain a more general solution, we define a causal state space system using 1-step,2-step,...,τ-step predictors of the NAR model and identify a Koopman operator for this model using extended dynamic mode decomposition. The hybrid scheme we call causal-jump dynamic mode decomposition, which we illustrate on a growth profile or fitness prediction challenge as a function of different input growth conditions. We show that our model is able to recapitulate training growth curve data with 96.6% accuracy and predict test growth curve data with 91% accuracy.