论文标题

通过群集进行几次射击分类的归纳无监督域的适应性

Inductive Unsupervised Domain Adaptation for Few-Shot Classification via Clustering

论文作者

Cong, Xin, Yu, Bowen, Liu, Tingwen, Cui, Shiyao, Tang, Hengzhu, Wang, Bin

论文摘要

当需要适应各种领域时,很少有射击分类往往会挣扎。由于域之间的非重叠标签空间,常规域适应性的性能受到限制。以前的工作通过假设访问完整的测试数据来解决问题,这对于许多现实世界中的应用程序过于限制。在本文中,我们着手通过引入归纳框架DAFEC来解决此问题,以改善域的适应性性能,以通过聚类进行几次分类。我们首先构建一个表示提取器,以从目标域中得出未标记数据的功能(无需测试数据),然后将它们与群集矿工分组。生成的伪标记的数据和标记的源域数据被用作更新几个弹出分类器的参数的监督。为了推导高质量的伪标签,我们提出了一种聚类促进机制,以通过相似性熵最小化和对抗分布对准来学习更好的特征,并与余弦退火策略结合使用。实验是在少数2.0数据集上执行的。我们的方法的绝对收益(分类精度)分别超过了以前的工作,分别为4.95%,9.55%,3.99%和11.62%,分别在四个少数几个设置下。

Few-shot classification tends to struggle when it needs to adapt to diverse domains. Due to the non-overlapping label space between domains, the performance of conventional domain adaptation is limited. Previous work tackles the problem in a transductive manner, by assuming access to the full set of test data, which is too restrictive for many real-world applications. In this paper, we set out to tackle this issue by introducing a inductive framework, DaFeC, to improve Domain adaptation performance for Few-shot classification via Clustering. We first build a representation extractor to derive features for unlabeled data from the target domain (no test data is necessary) and then group them with a cluster miner. The generated pseudo-labeled data and the labeled source-domain data are used as supervision to update the parameters of the few-shot classifier. In order to derive high-quality pseudo labels, we propose a Clustering Promotion Mechanism, to learn better features for the target domain via Similarity Entropy Minimization and Adversarial Distribution Alignment, which are combined with a Cosine Annealing Strategy. Experiments are performed on the FewRel 2.0 dataset. Our approach outperforms previous work with absolute gains (in classification accuracy) of 4.95%, 9.55%, 3.99% and 11.62%, respectively, under four few-shot settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源