论文标题
FNA ++:通过参数重新映射和体系结构搜索快速网络改编
FNA++: Fast Network Adaptation via Parameter Remapping and Architecture Search
论文作者
论文摘要
深度神经网络在许多计算机视觉任务中取得了显着的性能。大多数最先进的(SOTA)语义分割和对象检测方法重复使用用于图像分类为骨干的神经网络体系结构,通常在Imagenet上进行训练。但是,可以通过设计专门用于检测和细分的网络体系结构来实现性能增长,如最近的神经体系结构搜索(NAS)研究以进行检测和细分所示。但是,一个主要的挑战是,搜索空间表示(又称超级网络)或搜索网络的Imagenet预培训会带来巨大的计算成本。在本文中,我们提出了一种快速的网络适应方法(FNA ++)方法,该方法可以适应种子网络的架构和参数(例如,成像网络预培训的网络)成为一个具有不同深度,宽度或核大小的网络,或者通过参数重新映射技术来进行NAS进行nas进行汇总和检测任务,以便更有效地使用NAS。在我们的实验中,我们将FNA ++应用于MobilenetV2上,以获取用于语义分割,对象检测和人姿势估计的新网络,这些网络明显优于手动和NAS设计的现有网络。我们还在重新NAS和NAS网络上实施FNA ++,这表明了出色的概括能力。 FNA ++的总计算成本明显小于SOTA分割和检测NAS方法:比DPC少1737倍,比自动 - 清除次数少6.8倍,比DETNA少8.0倍。进行了一系列消融研究以证明有效性,并提供了详细的分析,以便更多地了解工作机制。代码可在https://github.com/jaminfong/fna上找到。
Deep neural networks achieve remarkable performance in many computer vision tasks. Most state-of-the-art (SOTA) semantic segmentation and object detection approaches reuse neural network architectures designed for image classification as the backbone, commonly pre-trained on ImageNet. However, performance gains can be achieved by designing network architectures specifically for detection and segmentation, as shown by recent neural architecture search (NAS) research for detection and segmentation. One major challenge though is that ImageNet pre-training of the search space representation (a.k.a. super network) or the searched networks incurs huge computational cost. In this paper, we propose a Fast Network Adaptation (FNA++) method, which can adapt both the architecture and parameters of a seed network (e.g. an ImageNet pre-trained network) to become a network with different depths, widths, or kernel sizes via a parameter remapping technique, making it possible to use NAS for segmentation and detection tasks a lot more efficiently. In our experiments, we apply FNA++ on MobileNetV2 to obtain new networks for semantic segmentation, object detection, and human pose estimation that clearly outperform existing networks designed both manually and by NAS. We also implement FNA++ on ResNets and NAS networks, which demonstrates a great generalization ability. The total computation cost of FNA++ is significantly less than SOTA segmentation and detection NAS approaches: 1737x less than DPC, 6.8x less than Auto-DeepLab, and 8.0x less than DetNAS. A series of ablation studies are performed to demonstrate the effectiveness, and detailed analysis is provided for more insights into the working mechanism. Codes are available at https://github.com/JaminFong/FNA.