论文标题
多个软件传感器与相位同步的无监督结合:心电图衍生的呼吸的强大方法
Unsupervised Ensembling of Multiple Software Sensors with Phase Synchronization: A Robust Approach For Electrocardiogram-derived Respiration
论文作者
论文摘要
目的:我们旨在融合不同心电图衍生的呼吸(EDR)算法的输出,以创建一个具有较高质量的EDR信号。方法:我们将每种EDR算法视为一种软件传感器,该软件传感器从不同的有利位置记录了呼吸活动,并根据呼吸信号质量指数确定了高质量的软件传感器,将最高质量的EDR与基于图形连接Laplacian的相位同步技术对齐,并最终融合了这些相位的EDRS,并将其融合在一起。我们将输出称为同步启动的EDR信号。在两个大规模的全夜多次多词图的大规模数据库上评估了所提出的算法。我们使用来自不同硬件传感器的三个呼吸信号评估了所提出的算法的性能,并将其与其他现有的EDR算法进行了比较。进行敏感性分析总共进行了五种情况:融合通过获得EDR信号的平均值,而EDR信号对准的四个无同步以及没有信号质量选择的情况。结果:当通过同步相关性(γ分数),最佳运输(OT)距离(OT)距离和估计的平均呼吸率(EARR)评分评估时,同步化组合的EDR算法的表现优于现有EDR算法,所有算法的表现都均优于统计学意义。灵敏度分析表明,信号质量选择和EDR信号对准都对性能至关重要,均具有统计学意义。结论:同步化的EDR提供了心电图中强大的呼吸信息。意义:相位同步不仅在理论上是严格的,而且设计强大的EDR也是实用的。
Objective: We aimed to fuse the outputs of different electrocardiogram-derived respiration (EDR) algorithms to create one EDR signal that is of higher quality. Methods: We viewed each EDR algorithm as a software sensor that recorded breathing activity from a different vantage point, identified high-quality software sensors based on the respiratory signal quality index, aligned the highest-quality EDRs with a phase synchronization technique based on the graph connection Laplacian, and finally fused those aligned, high-quality EDRs. We refer to the output as the sync-ensembled EDR signal. The proposed algorithm was evaluated on two large-scale databases of whole-night polysomnograms. We evaluated the performance of the proposed algorithm using three respiratory signals recorded from different hardware sensors, and compared it with other existing EDR algorithms. A sensitivity analysis was carried out for a total of five cases: fusion by taking the mean of EDR signals, and the four cases of EDR signal alignment without and with synchronization and without and with signal quality selection. Results: The sync-ensembled EDR algorithm outperforms existing EDR algorithms when evaluated by the synchronized correlation (γ-score), optimal transport (OT) distance, and estimated average respiratory rate (EARR) score, all with statistical significance. The sensitivity analysis shows that the signal quality selection and EDR signal alignment are both critical for the performance, both with statistical significance. Conclusion: The sync-ensembled EDR provides robust respiratory information from electrocardiogram. Significance: Phase synchronization is not only theoretically rigorous but also practical to design a robust EDR.