论文标题
预防药物使用障碍,检测,治疗和恢复的计算支持
Computational Support for Substance Use Disorder Prevention, Detection, Treatment, and Recovery
论文作者
论文摘要
物质使用障碍(SUD)涉及滥用多种物质,例如酒精,阿片类药物,大麻和甲基苯丙胺。 SUD的特征是尽管对个人造成了严重的社会,经济和与健康有关的后果,但仍无法减少使用。 2017年的一项全国调查确定,有12个美国成年人患有或患有药物使用障碍。美国国家药物滥用研究所估计,与酒精,处方阿片类药物和非法药物使用有关的SUD由于犯罪,工作生产力损失和医疗保健费用而使美国每年超过5200亿美元。最近,美国卫生与公共服务部已宣布国家阿片类药物危机为公共卫生紧急情况,以解决美国越来越多的阿片类药物过量死亡。在这个跨学科研讨会中,我们探讨了计算支持 - 数字系统,算法和社会技术方法(考虑到技术和人员作为复杂系统的相互作用)如何增强和启用用于预防,检测,治疗,治疗和长期恢复SUDS的创新干预措施。 计算社区财团(CCC)于2019年11月14日至15日在华盛顿特区发起了为期两天的研讨会,标题为“预防药物使用障碍,检测,治疗和恢复”的工作室。随着这个愿景过程的结果,我们确定了在SUD环境中计算支持的三个广泛的机会领域: 1。检测和减轻SUD复发的风险,2。建立和授权社会支持网络,3。在正式和非正式护理的生态中有意义地收集和共享数据。
Substance Use Disorders (SUDs) involve the misuse of any or several of a wide array of substances, such as alcohol, opioids, marijuana, and methamphetamine. SUDs are characterized by an inability to decrease use despite severe social, economic, and health-related consequences to the individual. A 2017 national survey identified that 1 in 12 US adults have or have had a substance use disorder. The National Institute on Drug Abuse estimates that SUDs relating to alcohol, prescription opioids, and illicit drug use cost the United States over $520 billion annually due to crime, lost work productivity, and health care expenses. Most recently, the US Department of Health and Human Services has declared the national opioid crisis a public health emergency to address the growing number of opioid overdose deaths in the United States. In this interdisciplinary workshop, we explored how computational support - digital systems, algorithms, and sociotechnical approaches (which consider how technology and people interact as complex systems) - may enhance and enable innovative interventions for prevention, detection, treatment, and long-term recovery from SUDs. The Computing Community Consortium (CCC) sponsored a two-day workshop titled "Computational Support for Substance Use Disorder Prevention, Detection, Treatment, and Recovery" on November 14-15, 2019 in Washington, DC. As outcomes from this visioning process, we identified three broad opportunity areas for computational support in the SUD context: 1. Detecting and mitigating risk of SUD relapse, 2. Establishing and empowering social support networks, and 3. Collecting and sharing data meaningfully across ecologies of formal and informal care.