论文标题

在高温治疗亚表面肿瘤中的温度聚焦的快速优化

Fast Optimization of Temperature Focusing in Hyperthermia Treatment of Sub-Superficial Tumors

论文作者

Gaffoglio, Rossella, Righero, Marco, Giordanengo, Giorgio, Zucchi, Marcello, Vecchi, Giuseppe

论文摘要

微波高温旨在选择性地将癌细胞加热到超生理温度。对于非表面肿瘤,可以通过配备有适当冷却系统(水注射)的天线阵列来实现这一目标,以避免皮肤过热。在患者特定的治疗计划中,对天线喂养进行了优化,以最大程度地提高肿瘤内的特定吸收率(SAR),或直接最大化那里的温度,涉及较高的数值成本。我们在这里提出了一种实施基于低复杂性温度的计划的方法。它是由于认识到SAR和温度由于水注射的热边界条件而变化的峰值以及生理作用,例如呼吸道导管中的气流。在我们的方法中,通过基于SAR的天线激发的优化来实现关注肿瘤的温度,但优化其目标以说明冷却效应。温度优化过程变成找到SAR峰位置,以最大化所选温度目标函数。将此方法应用于3D头颈部区域提供的温度覆盖率始终比单独使用SAR-Extimize获得的温度覆盖范围更好,这也考虑了热参数中的不确定性。通过求解生物学方程减少的次数,避免将其纳入全球优化过程,从而获得了这种改进。

Microwave hyperthermia aims at selectively heating cancer cells to a supra-physiological temperature. For non-superficial tumors, this can be achieved by means of an antenna array equipped with a proper cooling system (the water bolus) to avoid overheating of the skin. In patient-specific treatment planning, antenna feedings are optimized to maximize the specific absorption rate (SAR) inside the tumor, or to directly maximize the temperature there, involving a higher numerical cost. We present here a method to effect a low-complexity temperature-based planning. It arises from recognizing that SAR and temperature have shifted peaks due to thermal boundary conditions at the water bolus and for physiological effects like air flow in respiratory ducts. In our method, temperature focusing on the tumor is achieved via a SAR-based optimization of the antenna excitations, but optimizing its target to account for the cooling effects. The temperature optimization process is turned into finding a SAR peak position that maximizes the chosen temperature objective function. Application of this method to the 3D head and neck region provides a temperature coverage that is consistently better than that obtained with SAR-optimization alone, also considering uncertainties in thermal parameters. This improvement is obtained by solving the bioheat equation a reduced number of times, avoiding its inclusion in a global optimization process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源