论文标题

基于深层生成模型的心脏MRI细分质量控制

Deep Generative Model-based Quality Control for Cardiac MRI Segmentation

论文作者

Wang, Shuo, Tarroni, Giacomo, Qin, Chen, Mo, Yuanhan, Dai, Chengliang, Chen, Chen, Glocker, Ben, Guo, Yike, Rueckert, Daniel, Bai, Wenjia

论文摘要

近年来,卷积神经网络在各种医学图像分割任务中表现出了有希望的表现。但是,当将经过训练的分割模型部署到真实的临床世界中时,该模型可能不会发挥最佳性能。一个主要的挑战是由于图像质量或域转移问题降低而产生的潜在质量质量较差。及时需要开发一种自动化质量控制方法,该方法可以检测到不良的分段和对临床医生的反馈。在这里,我们提出了一个新型的基于生成模型的新型框架,用于对心脏MRI分割的质量控制。它首先使用生成模型学习了一定质量的图像分割对。然后,通过评估其投影到优质歧管的差异来评估给定的测试细分的质量。特别是,通过潜在空间中的迭代搜索来完善投影。所提出的方法可在两个公开可用的心脏MRI数据集上实现高预测准确性。此外,它显示出比传统基于回归的方法更好的概括能力。我们的方法为心脏MRI分割提供了实时和模型不足的质量控制,该控制有可能集成到临床图像分析工作流程中。

In recent years, convolutional neural networks have demonstrated promising performance in a variety of medical image segmentation tasks. However, when a trained segmentation model is deployed into the real clinical world, the model may not perform optimally. A major challenge is the potential poor-quality segmentations generated due to degraded image quality or domain shift issues. There is a timely need to develop an automated quality control method that can detect poor segmentations and feedback to clinicians. Here we propose a novel deep generative model-based framework for quality control of cardiac MRI segmentation. It first learns a manifold of good-quality image-segmentation pairs using a generative model. The quality of a given test segmentation is then assessed by evaluating the difference from its projection onto the good-quality manifold. In particular, the projection is refined through iterative search in the latent space. The proposed method achieves high prediction accuracy on two publicly available cardiac MRI datasets. Moreover, it shows better generalisation ability than traditional regression-based methods. Our approach provides a real-time and model-agnostic quality control for cardiac MRI segmentation, which has the potential to be integrated into clinical image analysis workflows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源