论文标题

关于AHLFORS-DAVID措施的最佳Voronoi分区,相对于几何均值误差

On the optimal Voronoi partitions for Ahlfors-David measures with respect to the geometric mean error

论文作者

Zhu, Sanguo, Zhou, Youming

论文摘要

令$μ$为$ \ mathbb {r}^q $的ahlfors-david概率度量,并带有支持$ k $。对于每$ n \ geq 1 $,让$ c_n(μ)$表示相对于几何平均值,以$μ$的价格为$ n $最佳的集合的集合。我们证明,存在常数$ d_1,d_2> 0 $,因此,对于每种$ n \ geq 1 $,c_n(μ)$中的每个$α_n\和任意的voronoi分区$ \ {p_a(p_a(α_n)\} d_1n^{ - 1} \ leq \ min_ {a \inα_n}μ(p_a(α_n))\ leq \ max_ {a \inα_n}μ(p_a(p_a(α_n))此外,我们证明每个$ p_a(α_n)$都包含一个封闭的半径$ d_3 | p_a(α_n)\ cap k | $,其中$ d_3 $是常数,$ | b | $表示$ b \ subset \ subset \ subset \ subset \ subbb \ nathbb {r} r}^q $。在更一般的环境中,建立了有关Voronoi分区元素元素元素元素元素元素的一些估计。

Let $μ$ be an Ahlfors-David probability measure on $\mathbb{R}^q$ with support $K$. For every $n\geq 1$, let $C_n(μ)$ denote the collection of all the $n$-optimal sets for $μ$ with respect to the geometric mean error. We prove that, there exist constant $d_1,d_2>0$, such that for each $n\geq 1$, every $α_n\in C_n(μ)$ and an arbitrary Voronoi partition $\{P_a(α_n)\}_{a\inα_n}$ with respect to $α_n$, we have \[ d_1n^{-1}\leq\min_{a\inα_n}μ(P_a(α_n))\leq\max_{a\inα_n}μ(P_a(α_n))\leq d_2n^{-1}. \] Moreover, we prove that each $P_a(α_n)$ contains a closed ball of radius $d_3|P_a(α_n)\cap K|$, where $d_3$ is a constant and $|B|$ denotes the diameter of a set $B\subset\mathbb{R}^q$. Some estimates for the measure and the geometrical size of the elements of a Voronoi partition with respect to an $n$-optimal set are established in a more general context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源