论文标题
具有驯服拓扑特性的本地O最低结构
Locally o-minimal structures with tame topological properties
论文作者
论文摘要
我们考虑了由DCTC模型共享具有驯服拓扑特性的本地O最低结构,以及第二种密集线性有序的Abelian群体的局部O局部O-最低膨胀。我们得出了在包括加法属性在内的结构中可定义的集合的基本属性的基本属性,这是纤维是等应二维的可定义地图的维数。还证明了分解定理为准特殊的亚策略。
We consider locally o-minimal structures possessing tame topological properties shared by models of DCTC and uniformly locally o-minimal expansions of the second kind of densely linearly ordered abelian groups. We derive basic properties of dimension of a set definable in the structures including the addition property, which is the dimension equality for definable maps whose fibers are equi-dimensional. A decomposition theorem into quasi-special submanifolds is also demonstrated.