论文标题
自我伴随光谱测量的任意稀疏光谱
Arbitrarily sparse spectra for self-affine spectral measures
论文作者
论文摘要
给定M_D({\ Mathbb Z})中的扩展矩阵$ r \,以及从$ {\ Mathbb z}^d/r({\ Mathbb z}^d)$中取的一组有限的数字$ b $。先前显示的是,如果我们可以找到$ L $,以便$(r,b,l)$形成A Hadamard三重,那么由$(r,b)$产生的相关分形自动措施承认了某些频率集$λ$的指数正顺数基础,因此被称为光谱量度。在本文中,我们表明,如果#$ b <| \ det(r)| $,不仅是光谱,我们还可以任意构建稀疏频谱$λ$,从而使其beurling dimension为零。
Given an expansive matrix $R\in M_d({\mathbb Z})$ and a finite set of digit $B$ taken from $ {\mathbb Z}^d/R({\mathbb Z}^d)$. It was shown previously that if we can find an $L$ such that $(R,B,L)$ forms a Hadamard triple, then the associated fractal self-affine measure generated by $(R,B)$ admits an exponential orthonormal basis of certain frequency set $Λ$, and hence it is termed as a spectral measure. In this paper, we show that if #$B<|\det (R)|$, not only it is spectral, we can also construct arbitrarily sparse spectrum $Λ$ in the sense that its Beurling dimension is zero.